zig-mcp-server
Language:
JavaScript
Stars:
10
Forks:
4
Zig MCP Server
A Model Context Protocol (MCP) server that provides Zig language tooling, code analysis, and documentation access. This server enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.
Features
Tools
1. Code Optimization (optimize_code)
Analyzes and optimizes Zig code with support for different optimization levels:
- Debug
 - ReleaseSafe
 - ReleaseFast
 - ReleaseSmall
 
// Example usage
{
  "code": "const std = @import(\"std\");\n...",
  "optimizationLevel": "ReleaseFast"
}
2. Compute Units Estimation (estimate_compute_units)
Estimates computational complexity and resource usage of Zig code:
- Memory usage analysis
 - Time complexity estimation
 - Allocation patterns detection
 
// Example usage
{
  "code": "const std = @import(\"std\");\n..."
}
3. Code Generation (generate_code)
Generates Zig code from natural language descriptions with support for:
- Error handling
 - Testing
 - Performance optimizations
 - Documentation
 
// Example usage
{
  "prompt": "Create a function that sorts an array of integers",
  "context": "Should handle empty arrays and use comptime when possible"
}
4. Code Recommendations (get_recommendations)
Provides code improvement recommendations and best practices:
- Style and conventions
 - Design patterns
 - Safety considerations
 - Performance insights
 
// Example usage
{
  "code": "const std = @import(\"std\");\n...",
  "prompt": "Improve performance and safety"
}
Resources
- 
Language Reference (
zig://docs/language-reference)- Official Zig language documentation
 - Syntax and features guide
 - Best practices
 
 - 
Standard Library Documentation (
zig://docs/std-lib)- 
Complete std library reference
 - 
Function signatures and usage
 - 
Examples and notes
3. **Popular Repositories** (`zig://repos/popular`) - 
Top Zig projects on GitHub
 - 
Community examples and patterns
 - 
Real-world implementations
 
 - 
 
Installation
- Clone the repository:
 
git clone [repository-url]
cd zig-mcp-server
- Install dependencies:
 
npm install
- Build the server:
 
npm run build
- Configure environment variables:
 
# Create a GitHub token for better API rate limits
# https://github.com/settings/tokens
# Required scope: public_repo
GITHUB_TOKEN=your_token_here
- Add to MCP settings:
 
{
  "mcpServers": {
    "zig": {
      "command": "node",
      "args": ["/path/to/zig-mcp-server/build/index.js"],
      "env": {
        "GITHUB_TOKEN": "your_token_here",
        "NODE_OPTIONS": "--experimental-vm-modules"
      },
      "restart": true
    }
  }
}
Usage Examples
1. Optimize Code
const result = await useMcpTool("zig", "optimize_code", {
  code: `
    pub fn fibonacci(n: u64) u64 {
        if (n  arr[j + 1]) {
                    const temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }
    }
  `
});
3. Generate Code
const result = await useMcpTool("zig", "generate_code", {
  prompt: "Create a thread-safe counter struct",
  context: "Should use atomic operations and handle overflow"
});
4. Get Recommendations
            
        
            
                const result = await useMcpTool("zig", "get_recommendations", {
  code: `
    pub fn main() !void {
        var list = std.ArrayList(u8).init(allocator);
        var i: u32 = 0;
        while (true) {
            if (i >= 100) break;
            try list.append(@intCast(u8, i));
            i += 1;
        }
    }
  `,
  prompt: "performance"
});
Development
Project Structure
zig-mcp-server/
├── src/
│   └── index.ts    # Main server implementation
├── build/          # Compiled JavaScript
├── package.json    # Dependencies and scripts
└── tsconfig.json   # TypeScript configuration
Building
# Development build with watch mode
npm run watch
# Production build
npm run build
Testing
npm test
Contributing
- Fork the repository
 - Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
 
License
MIT License - see the LICENSE file for details.
Publisher info
OpenSVM
Data explorer for all SVM based network (Solana L1, L2s, rollups, solana network extensions)